{NQSA"CR*12C3‘I9) FATER IMPACT ANALYSIS N74-32345
CF SPACE SHUTTLE SOLID ROCKFET HOTOR BY

[THE FINITE EZLENTNT HETHOD Final Report

(H3RC Analysis Research toerp., Providance) Juclas

20 p HC $7.57 CSCL 20K 1694 2

VA A i
,\;’ ,-'L-‘,,'\_ [ o T A

Frovideroe, Rnode atard 2290

el ACL TR DTG




Repaort TR73-7 for the

National Aeronautics and
Space Administration

v

\

on

WATER IMPACT ANALYSIS OF SPACE SHUTTLE SOLID
ROCKET MOTOR BY THE FINITE ELEMENT METHOD

by

0. Buyukozturk, H.D. Hibbitt, E.P. Sorensen
Marc Analysis Research Corporation
Providence, Rhode Island 02906

March, 1974

Final report on Contract No. NAS8-29195 with National--Aeronautics and Space
Adminstration, Marshall Space Flight Center, A]abama 35812



TABLE OF CONTENTS

: Page

T A Vo i
Introduction ................. S, l.. 1-1
Static Test Model Analysis with

Curved Triangular Shell Element ............... 2-1
Drop Test {or Inertia Loaded) Model ............. 3-1
Mesh Convergence Problem for

Solid Rocket Motor ......coivivreiiiniinnnnnnn. 4-1
Static and Inertia Load Comparison -

Linear Analysis iiiiiiriiiminrairnnnennnennness 5-1
Nonlinear Analysis for Inertia Load

With and Without Internal Pressure ............ 6-1
Inertia Loaded Booster Rocket Case Model,

New Loading ...oveiininninenrnrienrerreennoanns 7-1
Summary of Results and Conclusions ............. 8-1
References ....civriiiiiiitiiiiiie ittt 9-1

Appendix 1: Description of the MARC-CDC
Program ..uuiriiri ittt i e it et e e, 10-1



ABSTRACT

A study was made of the Space Shuttle Rocket Motor Casing during water
impact. The problem was assumed to be static and equivalent static Toads were
used. The objective was to ascertain that current finite element analysis
techniques could be relied on for design purposes.

Preliminary analysis showed that:the doubly curved triangular shell
elements were too stiff for these shell structures. The doubly curved quadri-
lateral shell elements were found to give much improved results.

A total of six load cases were analyzed in this study. The load
cases were either those resulting from a static test using reaction straps to
simulate the drop conditions or under assumed hydrodynamic conditions re-
sulting from a drop test. The latter hydrodynamic conditions were obtained
through an emperical fit of available data.

Results obfained from a linear analysis were found to be conéistent
with results obtained elsewhere with NASTRAN and BOSOR,

The nonlinear analysis showed that the originally assumed loads would
result in failure of the shell structures. The nonlinear analysis also showéd
that it was useful to apply internal pressure as a stabilizing influence on
collapse.

A final analysis with an updated estimate of load conditions resulted

in linear behavior up to full Toad.



INTRODUCTION 1

In this report we describe the analysis of the Space Shuttle Rocket
Motor Casing. The analysis was performed by the finite element method and
use was made of doubly curved shell elements. The MARC-CDC program was used
in this analysis. This program is described in the Appendix.

The object of the analysis was to verify the use of such analysis
by comparing its results with experiment. A further point of interest was
to determine if the structure would behave linearly up to full load., The
shell structure is loaded, in practice,;by‘inertia loads. A technique was
developed during the study to account for fhe pseudo-static loads and
~ reactions due to inertia.

The analysis is divided into four parts:
(a) In the initial stage the structure was modelled by means of
triangular shell elements. These were found to give too stiff

a result. (Sections 2 and 3)

(b) Subseguently, a convergence study was made to compare the
triangular shell element with the quadrilateral shell element.
The quadrilateral element was found to be a much better element

for this type of geometry and loading (Section 4).

(c) The quadrilateral element was then used for analysis of the
static model and the drop test model in the linear and nonlinear

regime. (Sections 5 and 6)

(d) Finally, a new estimate of the actual load during a drop test

was used for an incremental analysis. (Section 7)

1-1



STATIC TEST MODEL ANALYSIS WITH CURVED TRIANGULAR SHELL ELEMENT 2

Idealization

The static test model consists of a cylinder with two spherical closures
at the ends. The model is shown in Figure 2.1. Iﬁ the finite element idealization
238 shel] elements were used with a total of 160 nodes {Fig. 2.2). Appropriate
boundary conditions were imposed tb account for symmetry and remove rigid body

motion. Analysis assumptions are discussed in the following sections.

Thickness L
The assumed uniform thickness for the cylinder and the spheres are 0.347"
and 0.231" respectively. These thicknesses are based on the mean values employed
in constructing actual experimental models. The stiffening effect at the joints
is taken into account only at the end areas of the cylinder as shown in Figure 2.1.
In these areas the shell elements are uniformly thickened consistent with the
cross-sectional area of the joints.. Uniform thickness of 0.444" and 0.534" are
used corresponding to fwd and aft end joint areas respectively.
It is noted that a beam-shell model was initially generated to simulate

the stiffening effect. However, this model was abondoned because of the cost

involved in the analysis of that model.

Boundary Conditions

Since the structure and loading are symmetrical with respect to the xz
plane (Figure 2.1}, the following boundary conditions are imposed. For all nodes
on the xz plane:

av gl W
v=0,2% =9, % =9, &L -0
62 381

3 38]
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In addition to the symmetry conditions the following boundary con-

ditions are imposed to prevent rigid body motion:

At Node A:
0and w=20

=
[

At Node B:
u=20

Note that these latter conditions should impose no loads.

Loading N

The assumed loading for the present analysis is shown in Figure
2.3, and is defined as follows in terms of the surface coordinates 6] (=Rx)
and 0% (=z). The pressuré is varied linearly along the half length of the
cylinder. Following the notation defined in Figure 2.3, the variation of peak
section pressure P along the length (at ol = 0) is:

p,_-p
_'b'a 2 2
P = ;g—gg—-(e - ea) + Pa (1)
b™"a

The pressure is varied also along the circumference as a cosine function

1

so that the pressure vanishes at 51, where 8 is defined as a linear function

of 92:
-1 =1
6, - ©
‘ =1 _ b a ;.2 2y =1
‘ 6 = m (B - Ba) +Ba (2)
' b a
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]

Therefore, the pressure p at a general point (8', 92) is given by

fallowing expression:

P -P

1 2y _ b'a .2 2 T 8
P(s', 8°) = [ g7j;7'(e -87) +P,1 . cos [E'(§1_§1 )1 (3)
b~ b % (202 4 5]
92-92 a a
b “a

The numerical values assumed for the present analysis are:

Pa = 45. psi
Peak values of pressure on symmetry plane
Pb = 8. psi R
a =150 (3] =3l LR |
circumferential extents of pressure
loading
"] - o] —] - "]
ab - 60 (eb - ab . R)

The experimental strap support system was assumed to be frictionless,
so that it provides a uniform normal pressure over the entire strap angle
(120° - 60° in the symmetric halfAmodel). Then this reactive pressure, br as seen
in Figure 2.4, was computed as a functioniof axial position (82) to provide
section equilibrium in the x-direction, on the assumption that this was a
reasonable modelling of the experimental procedure.

Section equilibrium js achieved as follows:

" The component of the applied 1oad,,F§, at a sectijon defined by 92 is

given by the following:

2-3
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1.
= oo

where p 1is given by Eq. (3) and o is defined by o

"R .

Rewriting Eg. (3) in terms of a and substituting into Eq. (4) one

obtains

a ' g Ta
Fy =R . P [ cosacoss=da
0 o

The above integration yields

27R
=T .
8
a _ —_— é]
Fx =R . P. TR. 2 - COS 7
(o)~ -4
a :

¥

The component of the reactive load at a corresponding section is

P, - COS ¢ . Rd¢ = Py - R sing

-
o~

(]
O 1

Equilibrium condition F; = Fﬁ gives the reactive pressure:

2R
-1 =1
Pr = P - 8 (o]0} %—
sing [(ﬂ$ )2 - 4]

8

(5)

(6)

¢ is the strap angle used in the actual experiments and assumed to be 60°.

In the MARC program the distributed loads are computed by numerical °

integration over each element. A subroutine defines the load magnitude point-

by-point -- seven points are used per element in the element used in the present

analyéis. To check the accuracy of this_prqcedure, independent integrations



of the total applied loads in the x-direction (Eﬁuation (55 integrated with
re;pect to 92) and in the y-direction were performed. These values were
checked against the total distributed load in the x and y directions which were
internally calculated by the computer program for use in the stress analysis.

The comparison of the values is as follows:

a a
EFX sz
Numerical Integration 229,311 1bs. 54,045 1bs.
Program 234,734 lbs. 54,391 1bs,
o
Deviation (percent) 2 0.6

RESULTS

A small displacement elastic analysis was performed. The numerical
results were obtained in terms of displacement plots as well as contours of
direct and equivalent stresses on the top and bottom surfaces of the shell.

Figure 2.5 shows the radial displacements on the symmetry plane along
the length of'the‘cylinder. In this analysis a maximum radial displacement of
3.39" occurred at the mid-section.

The cross-sectional deformation pattern is plotted in Figure 2.6 at
the section where maximum radial displacement is obtained.

Figure 2.7 shows the y component of displacement on the y-z plane.

In the cylinder a maximum compressive hoop stress of 30,000 psi was

obtained on the surface close to where the maximum pressure was applied. The

stress was mainly caused by bending. At the same point the compressive axial

2-5



stress was 23,000 psi. It is noted, however, that a stress concentration
occurs in the aft end sphere due to ovalization. A maximum compressive
stress of about 51,000 psi was found in the hoop direction in the area (c)

indicated in Figure 2.7.

2-6
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DROP TEST OR INERTIA LOADED MODEL 3

The geometric model was identical to that used for the strap load

cases. This allows direct comparison between inertia and strap loads.

LOADING

The inertia Toading is derived below. This derivation assumes that
the casing behaves essentially as a rigid body during the deceleration, that
is, that for the computation of d'Alembert forces the distortion may be neg-
lected. Then referring to Figure 3.1, let the accelerations of the casing at
(X, ¥, z) be a_, ay, a. From symmetry considerations and the rigid body

X
assumption it follows immediately that

a_ =0 (1)
at all points.

The rigid body assumption gives additionally

Q
il

Ax + z ay

and a. = A - x.8 (2)

where Ax’ Az are the translational accelerations of the
point (0,0,0) in the x- and z-directions, and By is the

rotary acceleration of the same point about the y-axis.

The three equilibrium equations remaining after symmetry con-

siderations (about the x-z plane) are
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[a,ptds=0
S
in the z-direction

é a, pt ds = fl p, dS
S

in the x-direction

and £ (axz—azx) pt dS = £1sz ds

about the y-axis

where s s the surface of the casing,

gl

Py is the component of pressure in the x-direction
t (e], 82) is the shell thickness at a point (e], 9

and p is the shell density (assumed constant)

Equations (2) and (3) give immediately

since t = t (z) is not a function .of x.
Equations (2) and (4) give

oA, [ tdA + pa_ [zt dS = [
X y
S 5 s

]px dS

and (2) and (5) give

oA, [ zt dS + p@ f(22+x2) tdS = [ zp_ dS

is the surface subject to pressure,

(3)

(4)

(5)

2)

(7)



Equations (7) and (8) may be solved to give A, and péy as

{(I. -2z J.1
€ Y (9)

pA

1}
-

X X

pg, = 2 ¥ € (10)

where P, = [ p, dS = net external force in the x-direction
1

S
2z =1 [ p. d5 = center of influence of external pressure
c P X
X 31
V=7_1tdS = volume of shell
S
J, = [zt dS = Ist moment of area of shell about the
y 5 y-axis
and I, ={ (2%+x°) tdS = 2nd moment of area of shell about
Yy 5 the y-axis.

The load case is then defined by

1

p (e], 62) on S' (as used in the previous analyses)

and d'Alembert forces —ptax in the x-direction, -ptaZ in the

z-direction per unit surface area at all points of the shell.

The forces -ptax, —ptaz are available by combination of equations

(9) and (10) with (2).



In practice the constants defined after equations (10) were computed
numerically by suitable coding in the shell element in MARC, resulting in the

following values:

P, = -2.347 x 10° 1b

z P = -1.6207 x 10° Tb-in

cC X

v = 7.20881 x 10% in’
J, = 3.569 x 107 int

1, = 2.44714 x 1010 4n°

4

Then the coding was further modified to include -ptaX and -ptaZ
as forces on the shell in the x- and z-directions. This technique (using nu-
merical development of the inertia loads) made the inertia load analysis quite

straightforward. The values of Px’ z_, and V were checked by approximate hand-

o
calculation to eliminate gross programming errors.

RESULTS

The results of this analysis are summarized in Figures 2-9. .Figure 3.2
shows the cross-sectional distortion at the most severely distorted section of
the main cylinder. Figure 3.3 shows radial displacements on the x-z plane (the
symmetry plane). In both cases the strap loaded case (static test case) resh]ts
are shown for comparison. It may be seen that the inertia case always gives
significant]y less deformation. Comparison with the static model results
shows rather similar stress distributions, but with reduced_magnitude in the
inertia Toad case. The equivalent stresses in the last ring of e]emenfs of the
aft closure {the most highly stressed elements) are compared in Table 3.1 with the

linear analysis results for the strap loaded case.
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DISCUSSION

In general the comparison with the strap loaded case indicates that,
while the static test rig shoula‘predict the deformation mode with reasonable
accuracy, the magnitudes of the displacements in such a test are 30% too high
for the actual inertia loads and peak stresses are 60% too high. This is in-
tuitively explained by noting that the net reaction from the strap includes a
significant y-direction component not present in the inertia load. This should
tend to increése the stress Tevels, but reduce the distortion. More significantly,
the inertia load is generated uniformly around the circumference, while the strap
load is confined to the lower of 120° segment. Thus, some of the pressure load is
reacted directly by inertia loads, while in the strap loaded case all of the
pressure Toad must be carried around to the opposite side of the shell. It is
this difference which seems most likely to give the large differences in stress
and displacement magnitudes. The fact that the deformation modes are so similar
suggests that the geometry renders the structure relatively insensitive to the
distribution o% particular load components, since in one case {straps) the load
is confined to one section of the casing, while in the other case (inertia),

while the net loads must be the same, the distribution is rather more uniform.
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EQUIVALENT STRESS ({psi)

INSIDE OUTSIDE
Element Strap Inertia Strap Inertia
Number Reacted Reacted . Reacted Reacted
225 21592 13543 \ 50711 31525
226 18004 12131 16886 10757
227 17552 11261 27211 17407
228 39549 24317 12128 7830
229 31012 18718 21071 13722
230 15867 9520 22520 13227
231 15635 - 9447 15182 9812
232 11227 6977 46572 27973
233 32745 20112 41425 24621
234 16288 9411 20792 12106
235 17056 10085 24579 14569
236 39022 23514 27150 16558
237 18928 11573 36178 22135
238 14995 8772 18574 11381

TABLE 3.1 EQUIVLANET STRESS IN END RING-OF
ELEMENTS ON AFT CLOSURE
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MESH CONVERGENCE PROBLEM FOR SOLID ROCKET MOTOR 4

At this point in time the first results from the tests of the static
model and parallel analysis at NASA with NASTRAN and BOSOR suggested that the
results from MARC were four times too stiff. The NASTRAN analysis with 2000
elements in an octant model predicted a mid-section displacement of 12.8 ins.
in the static test and BOSOR predicted 13 ins. A mesh convergence study was
then performed with a simplified model with tﬁe same governing parameters as
the solid rocket motor booster to try tq explain this discrepancy.

In order to study the element effiéiency for the actual rocket motor
probiem, a smaller, simplier analysis problem was investigated. This problem was
felt to have the essential characteristics of the actual problem, but is of
considerably smaller size, so that mesh convergence experiments were not prohi-
bitively expensive. This section describes this smaller problem, and the results

obtained.
MODEL

The model is one-eighth of a circular cylinder, with symmetry conditions
on three edges and diaphragm support on the third (Figure 4.1). The loading is

a normal pressure with the same distribution as that of the real problem (Figure

4.2).
The pressure p at a general point (BT, 82) is given by the following
expression:
12 T8, . o)
ple's 67) = [ 2.7 (67-0,) +P,] . cos [T (g )]
b "a 0 (2 2y,

7 2 '8 "0 ®a
%703
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The numerical values assumed for the present analysis are:

Pa = 45. psi
peak values of pressure on symmetry plane
Pb = 8. psi
"'.I_ =] ']_'1 )
a, = 15 (Ba =0, . R)
,circumferential extents of pressure loading
‘]_ o ']_"]
ab—'so (Gb—eb.R)J
Where a] and 62 are the Gaussian surface coordinates with
1 2

8 =Ra, 87 = z.

Small displacement, linear elastic behavior was assumed.
ELEMENTS

Two thin-shell elements were used in this convergence test. Both use
Koiter-Saunders shell theory, and both have ¢! continuity (piecewise Cz). Rigid
body motions are represented exactly because of the isoparametric formulation
of the e]emenfs. Loading was generated by consistant distribution. The tri-
angular element is the Dupuis Element [1] which uses cubic interpolation
corrected by rational functions. The quadrilateral element is a simple bi-
cubic element using the nodal degrees of freedom

iaul aut p2] i=1.2.3

u s
’ 881 892 36]362’

at four nodes. This element is described by VerHague and Mallett in [2]. It
should be noted that the element is only admissible as a rectangle in the

(31, 82) plane (the mapped plane of surface coordinates). This is not as severe

e T e e e s e o e m
i T - H



a restriction as might first be thought, since any surface coordinate set
(', 6%) is allowable. However, the element is probably only useful for
problems of the present type, where a regular mesh is satisfactory both in the
1 .2
=

8 plane and on the real surface. For such problems, the element is jdeal,

since it is easy to form because of its straightforward interpolation functions,
and is cheap to run, since nine (Gaussian) integration points in the (8]—62)

plane prove sufficient.

RESULTS

In all cases regular grid spacings were used. The Dupuis element was
used with five meshes: 4x6 divisions, 4x8, 6x8, 6x10 and 8x10, where the
divisions around the quarter circumference are given first. The bicubic ele-
ment was used with three meshes; 2x2, 3x3 and 4x4 elements. Further meshes
were not run because it was felt Tittle additional improvement would be ob-
tained. The displacement results are characterized by the peak x-direction
displacement (at the top center of the cylinder) in Figure 4.3. These indicate
that any of thé bicubic meshes gives an essentially converged solution, while
the Dupuis triangle shows rather slow convergence. This came as a surprise,
since the Dupuis element has shown rapid convergence in the classical cylindrical
roof problem 6f Scordelis and Lo [3]. However, the relatively poor performance'

of the triangle was observed in some problems by Dupuis {3].

CONCLUSIONS

The above mesh convergence study was taken to indicate that the Dupuis
element was unsuitable for the rocket motor casing analysis, but that the bi-
cubic element would provide reliable results with any reasonable mesh spacing.
The convergence studies included small disﬁ]acement, Tinear elastic behavior
only, but because of the compieteness of the element formulation {and its iso-

parametric form), it was anticipated that it should give comparably good results
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in"the nonlinear range. Indeed, an axisymmetric form of this element was shown

to have excellent convergence properties by McNamara [5].
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STATIC AND INERTIA LOAD COMPARISON - LINEAR ANALYSIS 5

With the results of the mesh convergence study in hand, it was de-
cided to reanalyze the static and inertia loading cases.
This section covers a linear comparison between static (strap-
reacted) and inertia loadings of the 120" rocket motor casing. This analysis
is preliminary to a similar comparison, based on non-linear incremental analysis.
In all cases the pressure pad is on the aft half cylinder, with its peak at
the mid-section of the cylinder. This linear comparison has been made befare
in section 3. The difference is that the present analysis uses a higher order
quadrilateral shell element which has been shown to give rapidly convergent

displacement solutions for this type of loading in section 4.

MODEL
The modelling is of the same 120" casing described in previous sections.
The use of the new quadrilateral shell element allowed modelling with a coarser
mesh at small penalty in solution accuracy, with considerable savings in computer
cost. The geometric model assumed for the present analysis is shown in Figure
5.1a, and the mesh used is shown in Figure 5.1b.
Several points must be emphasized with regard to this geometric model-
ling: |
1. Uniform thickness has been assumed th}oughout the cylinder.
This is an unrealistic, but conservative assumption.\ The
difficulty with the inclusion of thickening effects is that
the thickened lengths are quite short compared to the element

size used in the analysis. Because of the cost of mesh re-

finement to capture thickening effects it was decided to yse

5-1



the un-thickened model. Thickening could be achieved
through the use of beam élements as stiffeners at the |
joints. While this approach is adequate for small dis-
placement elastic analysis, stress predictions are not
very good, so that this modelling is unsuitable for non-
linear work. It must be emphasized that the un-thickened
model will give conservative results, because the peak
stresses occur at the aft (Toaded) cylinder/sphere joint,

which should be thickened.

The aft spherical closure has been modelled as a complete
hemisphere. Previous analyses by MARC have assumed a 60"
opening in this closure, with no additional stiffness. Our
analysis with the new quadrilateral shell element showed this
end condition to be a most critical parameter, for both the
peak displacements on the cylinder and the stressing of the
closure itself. A strap-reacted analysis with the open ended,
unstiffened closure showed severe ovalization of the sphere with
associated high stresses. The closed end model was adopted
after discussion with NASA personnel, since the actual casing
would have some additional stiffness at this point from the
nozzle and other members. The complete closure assumed here
may possibly be over-stiff, in which case stresses on the clo-

sure would be under-estimated.

The mesh convergence tests indicated that'a course
mesh would be adequate for displacement predictions with

the new shell element. Since the non-linear analysis
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will be quite lengthy, it was decided to remesh with 5
sections around the half model (180°) and 12 sections along
the cylinder. The results reported in section 4 indicate
that this mesh spacing will give reliable displacement pre-
dictions for pressure pad loading. The linear analyses re-
ported here took about 12 minutes each on a CDC 6600 - a

considerable savings over previous analyses.

LOADING

The Toadings used in the present analysis follow the same patterns
reported previously. In both cases the prassure distribution is the same as that
shown previously in Figure 2.4. Since the load is distributed by numerical in-
tegration in the program, check sums are compared to an 'exact' integration. These
sums give the net force in the x (vertical) and y (horizontal) direction due to

the pressure on the half cylinder: their values are as follows:

Fx (1b) F(ib)
'Exact’ 229311 54045
.Previous Triangular
element mesh 234734 54391
Present Quadrilateral |
element mesh 228500 53793

For the inertia case, rigid body acceleration fields, a, (x, ¥, 2)
were computed by the technique defined in section 3. The five constants
defining the acceleration fields are again.computed numerically; the following

table compares their values:

5-3



Previous Triangular Current Quadrilateral

Element Mesh : Element Mesh

Total Vertical Load, Px ] -2.347 x 105 1b -2.285 x 105 1b.
Moment of x Component of
pressure about 0., z,. P, -1.6207 108 1b-in -1.5898 x 102 1b-in

. a3 4 .3
Volume of Casing, V 7.2088 x 107 1n 7.0629 x 107 1in
First Moment of Casing
about 0, J, 3.569 x 107 in” 3.5128 x 107 in?
Second Moment of Casing
about 0. 1, 2.4471 x 10'0 in® 2.2033 x 10'9 in?

RESULTS

a) Displacements

Displacement modes are quite similar in the two loading cases,
with rather different peak displacement magnitudes., The dis-
placed profiles of the top (pressure loaded) and bottom edge

are shown in Figure 5.2 (scaled to 45 psi peak pressure), and

the distorted shape of the most severely deformed radial section
is given in Figure 5.3. Note the asymmetry about the plane x = 0:
both the shape and magnitude of the vertical displacements

(Figure 5.3) are quite different for the two edges. This would

suggest that analyses based on the assumption of symmetry about
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the plane x = 0 would overpredict the displacement and
stress response under pressure loading since the reactive
loading (inertia or strap) produces a less distortion on
the opposite side of the shell. That is, symmetry about

x = 0 would be an overly conservative assumption.

Peak displacement magnitudes, scaled to 45 psi peak pressure,

are as follows:

Strap Reacted Inertia Reacted

Displacement at node
61 17.3" 13.6"

An explanation of the reduction in displacement response

was offered in [1]. This displacement is basically the same
as the NASTRAN and BOSOR predictions. It should be noted that
this analysis is for a half model as opposed to the quarter

models used for the NASTRAN and BOSOR analysis,

b}  Stress
Peak stresses now occur at the intersection of the cylinder
with the aft spherical closure. This is in contrast to the
previous comparison. [1], where peak stresses occurred on the
spherical closure, because of the ovalization allowed by the
unstiffened hole in the aft sphere of that analysis. Peak
stresses, scaled to 45 psi peak pressure, predicted by the

present analysis are as follows:

Strap Reacted . Inertia Reacted
Equivalent Stress (psi) 87440 63420
Hoop Stress (psi) 59530 46860
Axial Stress (psi) 53400 34550
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NONLINEAR ANALYSIS FOR INERTIA LOAD WITH AND
WITHOUT INTERNAL PRESSURE 6

This section describes the results of two non-linear incremental
analyses of the 120" rocket motor casing. The difference between the two
analyses lies in the loading and geometry of the model. The loading pattern
in the first analysis is the same as analyzed previously (section 3), but
applied incrementally using initially steps of 10% of full load (40 psi peak
pressure). The second analysis uses an additional uniform internal pressure
of 2 psi together with incremental loading of the external load pattern, in

5% steps.
MODEL

The geometric model assumed for the non-linear analysis with no internal
pressure was identical to that analyzed previously described in section 3. For
the analysis including internal pressure the model was modified so that the
forward spherical cap was closed. The quadrilateral shell element described in
section 4 was used in both models with the same mesh used in section 5. The
model is shown in Figures 5.1 and 5.1a. |

It must be emphasized that the geometry used assumes constant phick-
ness throughout the cylinder. The actual motor casing has thickened joints, so

that the model is assumed to yield conservative results.
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LOADING

The loading patterns used in these non-Tinear analyses were identical
to those used previously, with an inclusion of 2 psi internal pressure in the
second analysis. Since the models are almost identical (the only difference
is the inclusion of a closed forward sphere in the internal pressure case) the
rigid body acceleration fields, a, (x,¥,z), remained essentially unchanged and

the values reported in section 3 were used for both analyses.

RESULTS
a) Displacements
The displacements obtained from the two non-linear analyses
are quite similar in mode because the external loading dominates
the internal pressure. Figure 6.1 plots the distorted shape
of the most severely deformed nodal section at maximum load
reached. As was evident in the analysis of section 3 there is

no symmetry about the plane x=0.

Figure 6.2 and Figure 6.3 show the displaced profiles of the top
(pressure loaded) and bottom edges at maximum load reached in the two
load cases. Again the asymmetry is evident. Note, however, that although
the radial displacements are very similar in both mode and magnitude, the
results of the analysis run Qith 2 psi internal pressure cor-

respond to 45% of full load, whereas the results of the analysis

with no internal pressure are at 35% of full lead. The solution

does not converge to a specified tolerance after this load, in-

dicating imminent collapse (stjffness singu]arity). Thus, the

internal pressure is seen to stiffen the structure. This can be

seen clearly on Figure 6.4 which presents load-displacement curves

for node 61 (the most critical node).
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b) Stress

Peak stress magnitudes calcutated by the MARC pregram occur

in Element 41 and are as follows:

Internal p=0 psi Internal p=2 psi
(35% of full locad) (45% of full load)
Equivalent Stress (psi) 32,200 50,000
Hoop Stress (psi) 27,217 52,300
Axial Stress (psi) 26,500 36,611

Stress components and the equivalent stress are contoured for both analyses in
Figures 6.5 - 16, These stresses are shown for the highest lcads applied in each
case. There is a high degree of similarity in the stress patterns in the two
cases with the highest stresses occurring under the loading pad.

Figure 6.17 plots stresses versus % load for the centroid of the highest
stressed element, Element 41. HNotice that for the 10% load incrementation case
(no internal pressure) the solution in stress oscillates significantly between
increments. For the 5% load 1ncreméntation analysis (2 psi internal pressure},
the solution is much more stable until after 30% application of peak load.

This is the usual behavior as the collapse load is reached.

Recall that the internally pressurized case withstood 45% of full load-
as opposed to 35% in the non-pressurized analysis. This extra 10% of load ex-
plains the sizeable differences in the peak stresses noted above.

[t must also be remembered that the results presented here are con-
servative since there is no account taken of the thickening of the joints due

to the spherical-cylinder intersection.
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INERTIA LOADED BOOSTER ROCKET CASE MODEL, NEW LOADING 7

At this stage, new.resuTts from the drop test instrumentation re-
sulted in a less severe pressure loading condition. The pressure was more
localized. The analysis was repeated for this loading condition.

A non-linear, inertia Toaded analysis of the same 120" casing geometry
analyzed in previous work has been performed. The pressure distribution dif-
fered from that assumed previously, with a localized pressure spike of 55 psi
at 7=450". Some comparisons with previous analyses using the same geometry

but the previous pressure distribution are made in this section.

MODEL
The modelling is of the 120" casing described in previous reports.
The quadritateral shell element was used to allow modelling with a coarser
mesh at a small penalty in soiution accuracy. The geometric model used for
the present analysis is shown in Figure 5.1 and the mesh is shown in Figure

5.1A.

LOADING

The mechanical Toading distribution used for this analysis is shown
on Figﬁres 7.1 and 7.2. MNote the radical difference between this pressure
loading and the pressure loadings used in previous analyses. The total applied
pressure is about 2.5 times less in this analysis than that used previously.
The above mechanical loading was reacted by an interia loading as

previously derived. For this analysis, the necessary constants have the following

vaiues:
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RESULTS

where

Px

e

V =

J
Y

I
Y

a)

4

P, =-9.2288 x 107 1b

X
_ 7 .
ZCPX = -4.66293 x 107 1b-in

V= 7.06297 x 10% ind

li

J = 3.51284 x 107 in®

Y

2.40335 x 1010 in°

—
1l

= net external force in x direction

= center of influence of external pressure
Volume of shell

= 1st moment of area of shell about y axis

= 2nd moment of area of shell about ¥ axis

Displacements
The full load deformation mode (Figures 7.3 and 7.4) shows peak

displacement occurring more toward the forward end as compared
with the previous load distribution: at 7 = 480" in the current
analysis, and Z = 750" with the previous load case. Surprisingly,
although the pressure spike is considerably more Tocalized in

this analysis, the deformation mode does not appear to be cor-
respondingly localized. There is a possibility that the mesh

used for this analysis was excessively coarse for such a loading:
no convergence tests were performed for the new pressure dis-
tribution, since it was felt tﬁat, based dn previous experiehce
with such elements, this mesh could capture sharp strain

gradients. HNevertheless, convergence tests would be of value.
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Figure 7.5 shows peak x-direction displacement on the load symmetry
plane plotted as a function of full load fraction. The Tinearity of the re-
sponse is clearly evident in this plot, the initial slope change being attributed
to the constant internal pressure. Peak displacement was 3.73", compared to
about 7.5" in the previous analysis at 45% of that prescribed full load. This
difference is not surprising, since little localization was observed, and the

net load in the present case is 2.5 times less than that in section 6.

b)  Stress
Maximum stresses occur at the element integration point closest

to the Toad spike and are as follows:

Equivalent J2 stress (psi) 33000
Hoop stress (psi) 22000
Axial stress (psi) 16000

The various stress components calculated are on the inside and outside
of the casing contoured on Figures 7.6-7.11. Note especially in the two plots
of equivalent Jo stress (Figures 7.6 and 7.7) the similar stress pattern with
the maximum stress occurring directly beneath the peak pressure, and with high
stress gradients in that neighborhood.

Compared with previous analyses stresses are overall much lower again
because the pressure distribution used for this analysis is Tess severe than

those used in previous analyses.

CONCLUSIONS

The present analysis suggests that there is no likelihood of geometric
or material failure under the prescribed loading pattern and magnitude. This is

in sharp contrast to the previously analyzed load cases {where the same finite
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element model was used) where even with the 2 psi internal pressure, geometric
failure occurred at 45% of the prescribed load magnitude.

A1l analyses to date have been based on neglect of the stiffening
effects of the casing segment joints. Certainly this may be regarded as a
conservative assumption, so that a stiffened analysis of the current load case
should not be necessary, unless load magnitudes are to be significantly in-

creased.
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SUMMARY OF RESULTS AND CONCLUSTONS 8

From the results of the earlier analysis it may be concluded that
the doubly curved triangular shell elements are not suitable for analysis
of very flexible shell structures with small thickness to diameter ratios éuch
as the rocket motor casings analyzed here.

The quadrilateral doubly curved shell elements were found to be much
better than the triangular elements and were flexible enough for analysis of
the current problems. The non-linear results using the original tentative
loadings on the structure predicted that the structure would fail in service
with a 35% application of full load. It was found that an internal pressure
of 2 psi provided an extra load bearing capacity of 10%. It would be useful
to show that the effect of this internal pressurization varies linearly with
pressure,

The analysis with the more accurate load conditions show no signs
of non-]ineérity up to full load. It is thus concluded that the structure is
safe for service under these loads. The linear results obtained here were 1nﬁ
agreement with results obtained with NASTRAN and BOSOR. This gives further
confidence to the use of analysis for design of such shells subjected to splash

down loadings.
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APPENDIX 1: DESCRIPTION OF THE MARC-CDC PROGRAM 10

MARC-CDC is a non-linear general-purpose program which attempts to in-
&orporate the Tatest in finite-element technology. The program consists of
various modules, each of which represents a particular aspect of finite-eiement
technology -- such as element geometry, material behavior, structural mechanics
and matrix manipulation.

The modules may be selected and used simultaneously with each other in
a variety of combinations, resulting in a broad-based program which achieves
thé full potential of a general-purpose program. Aimed at moderate-size pro-
blems, the program offers up to 10,000 degrees of freedom (depending on band-
width size} and maintains a balance between efficiency and size.

Designed to operate on CDC 6600 computer systems, MARC-CDC was de-
veloped by the MARC Analysis Research Corporation of Providence, R.I., It is
available in the United States through Control Data Corporation's CYBERNET

services network.

PROGRAM CAPABILITIES

Because of its many capabilities, MARC-CDC is well suited for state-
of-the-art analysis in applications such as pressure-vessel design, nuclear
reactor design, and aerospace and automotive research. Among the many modules
of MARC-CDC are the following libraries, programs, and sub-programs:

Element Library -- a library of 25 elements, including curved beams
with open and closed sections in one, two and three dimensiona; plates and
shells; and solid two and three—dimension§1 Asoparametrfc elements. These
elements, when used in combination, have been selected so they can model any

conceivable structure, depending upon size limitations of the program.
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A special linkage feature enables the interconnection of shell and solid
etements. A1l elements incorporated within the total MARC-CDC library have
been constructed to permit the use of large displacement behavior and non-
linear material behavior theories.

Non-1inear Behavior Library -- This library contains a selection of
theories which cover the major material nonlinearities encountered in structural
analysis. Creep analysis is effected by an initial strain procedure. Elastic-
plastic analysis with either isotropic or kinematic hardening (in full nine-
dimensional stress space) and temperature-dependent material properties is per-
formed with an incremental (tangent modulus) procedure. A pressure-dependent
yield stress is available for use with soil and other pressure-dependent materials
(generalized Mohr-Coulomb behavior).

Structural Theory -- Program control has been implemented to permit
the combination of both the element library and behavior library in a series of
piece-wise linear incremental analyses of every type of structure. Accordingly,
analysis problems involving creep, buckling, combined nonlinear material and
geometric behavior may be performed.

Compatible Heat-Transfer Analysis -- A separate nonlinear finite-element
heat transfer program generates compatible thermal data for use with the stress
program. Typical problems include fusion (latent heat} effects, temperature-
dependent thermal properties and non11ne§r boundary conditions (such as radiation).

Pre-Processor Programs -- MARCMESH-2D and MARCMESH-3D are available for
the generation and bandwidth optimation of two and three-dimensional problems.
With MARCSTRUCPL, input data may be plotted in pTanes or perspective.

Restart and Automatic Load Incrementation -- These features have been
developed during extensive experience with nonlinear analysis and result in an .
economy of computing time. The actual flow of an analysis can be seen by fo]]b@ing

the flow sequence given in Figure A.1.
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ADDITIONAL FEATURES

MARC-CDC also permits users to substitute their own subroutines to
perform special tasks, thereby increasing the overall flexibility of the total
program. These subroutines may cover a wide range of functions, from special
input and output, to special creep laws and boundary conditions for thermal analysis.
In addition, the MARC Corporation is currently developing many other modules and

capabilities to further enhance the program.

PROGRAM CAPABILITIES USED IN PROJECT

CURVED TRIANGULAR SHELL ELEMENT -

MARC-CDC Element 8

Because we are concerned with the use of the curved triangular shell
element - Element 8, we shall give a brief description of this element and
its major features. This element 1is an isoparametric curved triangular shell
element baéed on the Koiter-Sanders shell theory, which fulfills continuity

requirements and represents rigid-body motions exactly.
GEOMETRY

The middle surface of the shell is defined by the equations:

X = x(e], 62)
y = yl8y, 85)

where
(x, ¥, z) are Cartesian coordinates.

(e], 62) denote Gaussian coordinates on the middle surface o '~ <01
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The domain of definition in the plane (0], 92) is divided into a
mesh of triangles which ére mapped onto curved elements on the middle surface
Z. The actual middle surface is approximated by a smooth surface & which has
the same coordinates (x-y-z) and the same tangent plane at each nedal point of
the mesh. Practically, the mesh is defined by the Gaussian coordinates
(811, 82i) of the nodal points, and the surface & ﬁs defined by the values of

According to the terminology of MARC-CDC, the coordinates are, therefore, the

set:
614> O35 x(py)s 3x(p;)/30q, ax(py)/a0,

ypi)s aylpy)/eey, & (py)/ae,

z(p;), az(p,}/e8y, az(p.)/o0,
where

x(pi) stands for x(eli’ 821), (611, 021) being the coordinates of

the node P;-
DISPLACEMENTS

There are nine degress of freedom for each nodal point Py These
degrees of freedom are defined in terms of the Cartesian components of dis-
placement u,v, and w, and rates of change with respect to the Gaussian

coordinates.
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ulpy), aulpy)/asy, 2ulpy)/as,

wipy)s awlps}/oey, sw(p,)/a0,
LY
The displacements within an element are defined by interpolation
functions. These interpolation functions ¢(0], 02) are such that compati-
bility of displacements and their first derivatives is insured between ad-
jacent elements. Hence, for an element whose vertices are the nodal points

Pis p:j and P> the components u, v, w are defined as:

T I Y |
U(e'ls 82) "(LJ_'Is QJ, l_J_k) . ¢(G]s 82)
' T T T
V(81 8y) = (Vi Viu V) o a(6q, 8,)
I T B
W(91, 82) - (H'l’ Hjs k'[_k) . CIJ(B], 82)

NUMERICAL INTEGRATION

For this element, seven points of integration are used, with a rule

which is exact for all polynomials up to the fifth order.

LOADS

Three different distributed loads are possible. The first case is a
uniform load proportional to the surface aréa, positive when applied in the
negative z-direction. The second case is a uniform normal pressure per unit

of area on the surface. The third case is a non-uniform normal pressure per
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unit surface area. In addition to uniform Toads, concentrated loads may be

applied at the nodes.

LARGE DEFORMATION ANALYSIS

The large deformation analysis follows the Lagrangian description used
in MARC-CDC [Al1]. Hote that only Targe deflection terms corresponding to the
stretching strains have been introduced. This approximation is usually acceptable

even for nonlinear buckling analysis.

CURVED QUADRILATERAL THIN-SHELL ELEMENT -

ELEMENT 4

This is an isoparametric, doubly-curved thin shell element, using
bi-cubic interpolation functions. The element is based on Koiter-Sanders
shell theory, fulfilling continuity requirements, and represents rigid body
modes exactly when used as a rectangle in the mapped surface coordinate plane.
The element contains no patching functions, so that it is restricted to qua-
drilateral meshes with a maximum of four elements sharing one common node.
However, the element is rapidly convergent in most problems which allow such
a mesh. Note that any suitable surface coordinate systems may be chosen, so

that the mesh need not be rectangular on the actual surface.

GEOMETRY

The element is isoparametric, so that the actual surface is interpolated
from nodal coordinates. The mesh is defined in the @]—02 plane of surface
coordinates. Then the actual surface is approximated by a surface defined by
cubic interpolation on the interior of each element based on therf0110wing

set of 14 nodal coordinates:

Y
A2’ Z, _] .2, 3@] 392’ 3@] 302, 3@1 3@2'
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In most practical cases, the surface is definable as:

x = x(e', )
y = y(a', o)
Z = z(a], 62)

Then the usual procedure is to define the mesh in the @1-62p1ane (as a rectangular mesh)

1, 92, at each node, through the COORDINATE

by supplying the first two coordinates, o
input option. Then the remaining 12 coordinates are defined at each node through the
use of the subroutine FXORD. .

The thickness of the element is defined in EGEOM1. Note that when elements of

differing thickness abut, tying must be used to avoid the imposition of improper

continuity of membrane strain.

DISPLACEMENT
There are 12 degrees of freedom at each node: these are
ou ay oV gV aw oW 82u 82V azw
ok 391’ a@z’ v 39]’ 362’ W ae]’ a@z’ ao] aez’ a@] aez’ ae] 392

where u, v, w are the Cartesian components of displacement.

Displacement is interpolated by complete bi-cubic on the interior of an element,
so that equality of the above nodal degrees of freedom at the coincident nodes
of abutting elements ensures the necessary continuity required for thin shell

theory.

Note that fixed displacement boundary conditions should never be associated with
all 12 degrees of freedom at each node, since 3 degrees of freedom must always
determine middie surface {membrane)} strains at the node. Care must therefore be
exercised both in the specification of kinematic boundary‘conditions-- they must
be fully, but not over-fully specified, and in the application of moments so that
the generalized forces and the conjugate displacement multiply together to give

a rate of mechanical work.
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CONNECTIVITY SPECIFICATION AND NUMERICAL INTEGRATION

The nodal point numbers of the element must be given in anti-clockwise

order on the 9]—@2 plane, starting with the point (min 9] and 92). Thus, 1in

Figure A-2, the connectivity must be given as i, j, k, 1.

HE
10 ¥ ek
e
[ =]

FIG. A-2 FORM OF ELEMENT 4

The element is integrated numerically using 9 points (Gaussian quadrature).

The first integration point is always closest to the first node of the e]ement,'
then the 1ntegraf10n points are numbered as shown in Figure A-2., Point &
(controid of the element in the eT-ez plane is used for stress output if

NSTRESS=0 {or ALL POINTS option not flagged).

LOADS
Distributed Loads
Three specifications of distributed loads are available with this element.

These are described below.d below.

Distributed Load Type 1
This gives a uniform load, proportional to surface area, positive in the negative

z-direction (self-weight or snow load).
Distributed Load Type 2

Uniform normal pressure per unit area of surface. The magnitude of the pressure
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is positive when applied in the negative n direction where n = a; x a, is the
normal to the surface: a; is tangent to the positive 0, tine, a, is tangent

to the positive 8, line.
Distributed Load Type 3

This is a normal pressure per unit area of surface and is the same as type 2 except
the magnitude is a function of position. The magnitude is defined in the user

subroutine FORCEM: the required header cards are:

SUBROUTINE FORCEM(PRESS,THT,TH2,lN,N})
ﬂser Coding
RETURN
END
with PRESS = magnitude of pressure at this point, defined by the user
in this routine.

TH1 | Surface coordinates of the point, passed in for use in
TH2 | this routine.
NN Integration point number.

N Element number.

This subroutine will be called once per integration point in all elements of type
4 listed with load type 3. For such elements, the magnitude of load input in
TRACTIONS, card series 5, will be ignored and the value defined in the user subroutine

FORCEM will be used instead. Note that TH1, TH2, NN and N must not be changed.
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